学术活动

Gaussian curvature flow on $S^2$ for sign-changing curvature candidates-陈学长教授 (南京大学)

作者:   来源:  时间:2020-10-09

题目:Gaussian curvature flow on $S^2$ for sign-changing curvature candidates

报告人:陈学长,教授,南京大学

摘要:We introduce a Gaussian curvature flow to study the Nirenberg problem. This flow with a different normalization from the original one by Struwe, seems more suitable to sign-changing case. Precisely, let $f$ be positive somewhere on $S^2$. Assume that $|/nabla f|^2+(/Delta_{S^2}f)/neq 0$ on $/{f>0/}$ and the difference between the number of maxima of $f$ and the number of positive saddle points of $f$ with negative Laplacian is not equal to 1, then there exists at least a conformal metric of the round metric having $f$ as its Gaussian curvature. This is joint with Mingxiang Li, Zirui Li and Professor Xingwang Xu.

时间:2020年10月9日(周五)  下午13:30-14:30

地点:线上腾讯会议(会议号:933 925 525)

联系人:张振雷

 

欢迎全体师生积极参加!