教授

张振雷

  • 职称(Positional titles):

  • 教授

  • 所在部门(Department):

  • 几何与拓扑教研室

  • 研究方向(Research direction):

  • 几何与拓扑

  • 办公室(Office):

  • 教二楼 616

  • E-mail :

  • zhleigo AT aliyun.com

  • 个人主页(Personal home page):

个人简介 论文出版物 Personal profile

张振雷,男,2008年7月至今在首都师范大学数学科学学院工作。博士毕业于南开大学。研究方向是微分几何,研究内容包括Ricci流、Einstein流形等几何分析问题。


1. Tian, Gang; Zhang, Zhenlei; Relative volume comparison of Ricci flow. Sci. China Math. 64 (2021), no. 9, 1937–1950.
2. Zhang, Yashan; Zhang, Zhenlei The continuity method on Fano fibrations. Int. Math. Res. Not. IMRN 2020, no. 22, 8697–8728.
3. Zhang, Yashan; Zhang, Zhenlei The continuity method on minimal elliptic Kähler surfaces. Int. Math. Res. Not. IMRN 2019, no. 10, 3186–3213.
4. Chen, Chih-Wei; Zhang, Zhenlei Volume bounds of the Ricci flow on closed manifolds. Math. Z. 291 (2019), no. 3-4, 1133–1144.
5. Dai, Xianzhe; Wei, Guofang; Zhang, Zhenlei Local Sobolev constant estimate for integral Ricci curvature bounds. Advances in Mathematics. 325 (2018), 1–33.
6. Dai, Xianzhe; Wei, Guofang; Zhang, Zhenlei Neumann isoperimetric constant estimate for convex domains. Proc. Amer. Math. Soc. 146 (2018), no. 8, 3509–3514.
7. La Nave, Gabriele; Tian, Gang; Zhang, Zhenlei Bounding diameter of singular Kähler metric. American Journal of Mathematics. 139 (2017), no. 6, 1693–1731.
8. Tian, Gang; Zhang, Zhenlei Convergence of Kähler-Ricci flow on lower-dimensional algebraic manifolds of general type. Int. Math. Res. Not. IMRN 2016, no. 21, 6493–6511.
9. Tian, Gang; Zhang, Zhenlei Regularity of Kähler-Ricci flows on Fano manifolds. Acta Mathematica. 216 (2016), no. 1, 127–176.
10. Tian, Gang; Zhang, Shijin; Zhang, Zhenlei; Zhu, Xiaohua Perelman's entropy and Kähler-Ricci flow on a Fano manifold. Trans. Amer. Math. Soc. 365 (2013), no. 12, 6669–6695.
11. Tian, Gang; Zhang, Zhenlei Degeneration of Kähler-Ricci solitons. Int. Math. Res. Not. IMRN 2012, no. 5, 957–985.
12. Zhang, Yuguang; Zhang, Zhenlei A note on the Hitchin-Thorpe inequality and Ricci flow on 4-manifolds. Proc. Amer. Math. Soc. 140 (2012), no. 5, 1777–1783.
13. Zhang, Zhenlei Kähler Ricci flow on Fano manifolds with vanished Futaki invariants. Math. Res. Lett. 18 (2011), no. 5, 969–982.
14. Zhang, Zhenlei Degeneration of shrinking Ricci solitons. Int. Math. Res. Not. IMRN 2010, no. 21, 4137–4158.
15. Fang, Fuquan; Zhang, Zhenlei; Zhang, Yuguang Non-singular solutions of normalized Ricci flow on noncompact manifolds of finite volume. J. Geom. Anal. 20 (2010), no. 3, 592–608.
16. Ruan, Wei-Dong; Zhang, Yuguang; Zhang, Zhenlei Bounding sectional curvature along the Kähler-Ricci flow. Commun. Contemp. Math. 11 (2009), no. 6, 1067–1077.
17. Fang, Fuquan; Li, Xiang-Dong; Zhang, Zhenlei Two generalizations of Cheeger-Gromoll splitting theorem via Bakry-Emery Ricci curvature. Ann. Inst. Fourier (Grenoble) 59 (2009), no. 2, 563–573.
18. Fang, Fuquan; Zhang, Yuguang; Zhang, Zhenlei Maximum solutions of normalized Ricci flow on 4-manifolds. Comm. Math. Phys. 283 (2008), no. 1, 1–24.
19. Fang, Fu-quan; Man, Jian-wen; Zhang, Zhen-lei Complete gradient shrinking Ricci solitons have finite topological type. C. R. Math. Acad. Sci. Paris 346 (2008), no. 11-12, 653–656.
20. Fang, Fuquan; Zhang, Yuguang; Zhang, Zhenlei Non-singular solutions to the normalized Ricci flow equation. Math. Ann. 340 (2008), no. 3, 647–674.
21. Zhang, Zhei-lei Compact blow-up limits of finite time singularities of Ricci flow are shrinking Ricci solitons. C. R. Math. Acad. Sci. Paris 345 (2007), no. 9, 503–506.
22. Zhang, Zhenlei On the finiteness of the fundamental group of a compact shrinking Ricci soliton. Colloq. Math. 107 (2007), no. 2, 297–299.

I have been working in the School of Mathematics, CNU, since September 2008. My research field is differential geometry. I am interested in the geometric analysis problem, such as Ricci flow, Einstein manifolds etc.