X

辛国策

  • 职称(Positional titles):

  • 教授

  • 所在部门(Department):

  • 代数教研室

  • 研究方向(Research direction):

  • 代数组合

  • 办公室(Office):

  • 教二楼 621

  • E-mail :

  • guoce.xinATgmail.com,guoce_xin@163.com

  • 个人主页(Personal home page):

个人简介 论文出版物 教学经历 科研项目及会议 Personal profile

辛国策教授长期从事组合数学方向的研究,2004年以来已发表科研论文40多篇,部分论文被300多位国内外同行引用362次,单篇最高37次。辛国策关于迭代形式Laurent级数(iterated Laurent series)这一创新性成果,得到了国内外同行的高度评价,特别是美国数学会Steele重大贡献奖和ICA's Euler奖获得者Doron Zeilberger评价其算法为“卓越的”(“brilliant”)。此外,辛国策在代数组合领域做出了一系列有影响的工作,尤其是在Shuffle猜想方面的一篇文章中,创造性地将代数几何中的有理型Shuffle 猜想引入代数组合中,并推广到非互素的情形,是递归证明有理型Shuffle 猜想的基础,它推进了Shuffle猜想的研究,已被13篇SCI论文他引,得到了广泛的关注。


1. Francois Bergeron, Adriano Garsia, Emily Leven, and Guoce Xin, Compositional $(km,kn)$-Shuffle Conjectures, Int. Math. Res. Not. 2016 (14): 4229--4270.
2. Adriano Garsia, Emily Leven, Nolan Wallach, and Guoce Xin, A new plethystic symmetric function operator and the rational Compositional Shuffle Conjecture at $t=1/q$, J. Combin. Theory Ser. A 145 (2017), 57--100.
3. Ying Wang, Guoce Xin, and Meimei Zhai, Hankel determinants and shifted periodic continued fractions, Adv. Appl. Math., 102 (2019), 83--112.
4. Ying Wang, and Guoce Xin, Hankel determinants for convolution powers of Catalan numbers, Discrete Mathematics, 342(9) 2019, 2694--2716.


1.王营,博士研究生,2019年6月博士毕业于首都师范大学,发表3篇SCI论文。
2.张英瑞,博士研究生,发表1篇SCI论文
3.钟岳明,博士研究生,发表1篇SCI论文


1. 2012-2015年,主持国家自然科学基金面上项目:“MacMahon分拆分析在固定维数下的多项式时间算法” (11171231),承担科研基金45万。
2. 2013-2015年,主持北京市教委的“北京市属高等学校高层次人才引进与培养三年行动计划--青年拔尖人才培育计划”,承担科研基金30万。
3. 2021-2024年,主持国家自然科学基金面上项目:“Frobenius问题和denumerant的常数项方法”(12071311),承担科研基金52万。

本领域重要国内/国际学术会议经历
1. 2017年11月,奥地利,维也纳,Computer Algebra in Combinatorics,国际会议,Some progress on the sweep map
2. 2018年5月,哈尔滨工业大学,组合数学研讨会,国内会议,On parking functions with a prescribed diagonal cars
3. 2018年9月,重庆大学,第二届重庆大学组合数学及其应用研讨会,国内会议,Hankel determinants and shifted periodic continued fractions
4. 2018年10月,大连理工大学,第三届组合数学与符号计算研讨会,国内会议,On Sweep Map of Dyck paths
5. 2021年8月20-22日 第十一届海峡两岸图论与组合会议 (山东大学)Zoom会议 Algorithmic development for MacMahon’s partition analysis
6. 2021年1月22日 组合理论与算法讨论班 (中科院) 腾讯会议 An LLL-based approach for MacMahon’s partition analysis

Professor Guoce Xin has been engaged in the research of combinatorics for a long time. Since 2004, he has published more than 40 research papers, some of which have been cited 362 times by more than 300 domestic and foreign peers, and the highest number of single paper is 37 times. Xin’s innovative achievement of iterated Laurent series has been highly praised by his peers both domestic and abroad, especially Doron zeilberger, winner of Steele major contribution award and ICA's Euler award of American Mathematics Association, who appraised his algorithm as "brilliant". In addition, Guoce Xin has made a series of influential works in the field of algebraic combination, especially in an article on shuffle conjecture, which creatively introduces rational shuffle conjecture in algebraic geometry into algebraic combinatorics and extends it to the case of non coprime pair of parameters. It is the basis of a recursive proof of the rational shuffle conjecture, which promotes the research of shuffle conjecture. It has been cited by 13 SCI papers, and has been widely concerned.