N

牛冬娟

  • 职称(Positional titles):

  • 教授

  • 所在部门(Department):

  • 分析教研室

  • 研究方向(Research direction):

  • 偏微分方程

  • 办公室(Office):

  • 教二楼 525

  • E-mail :

  • djniu AT cnu.edu.cn

  • 个人主页(Personal home page):

个人简介 论文出版物 教学经历 科研项目及会议 Personal profile

牛冬娟,女,教授,博导。长期从事流体力学中的偏微分方程研究,在国际重要刊物发表多篇论文,多次主持国家自然科学基金。办公室位于本部教二楼525室,电子邮件为djniu@cnu.edu.cn。


1. Global existence of weak solutions to the incompressible axisymmetric Euler equations without swirl. J. Nonlinear Sci. 31 (2021), no. 2, Paper No. 36, 24 pp. 35Q35
2. Stability of the boundary layer expansion for the 3D plane parallel MHD flow. J. Math. Phys. 62 (2021), no. 2, Paper No. 021510, 25 pp.
3. Boundary layer for 3D plane parallel channel flows of nonhomogeneous incompressible Navier-Stokes equations. Discrete Contin. Dyn. Syst. 40 (2020), no. 8, 4579–4596.
4. Vanishing porosity limit of the coupled Stokes-Brinkman system. J. Math. Anal. Appl. 486 (2020), no. 2, 123895, 24 pp.
5. Axisymmetric 3D Euler-α equations without swirl: existence, uniqueness, and radon measure valued solutions. Pure Appl. Funct. Anal. 4 (2019), no. 3, 573–588.
6. The limit of vanishing viscosity for the incompressible 3D Navier-Stokes equations with helical symmetry. Phys. D 376/377 (2018), 238–246.
7.Global well-posedness of three-dimensional Navier-Stokes equations with partial viscosity under helical symmetry. Z. Angew. Math. Phys. 68 , 2017, no. 3, Art. 69, 12 pp.
8. Global existence of weak solutions to the three-dimensional Euler equations with helical symmetry, J. Differential Equations 262 (2017), no.10, 5179-5205.
9. Global well-posedness of the nonhomogeneous incompressible liquid crystals system.
Mathematical Methods in the Applied Sciences 39, no. 15 (2016) ,4584–4602.
10. The 2D magnetohydrodynamic equations with magnetic diffusion. Nonlinearity 28 (2015) ,3935-3955.
11.Global helically symmetric solutions to 3D MHD equations. Acta Math. Appl. Sin. Engl. Ser. 30, (2014), no. 2, 347-358.
12. Planar Limits of Three-Dimensional Incompressible Flows with Helical Symmetry. Journal of Dynamics and Differential Equations 04, (2013) ,26(4) , 817-1170.
13. Stability of two-dimensional viscous incompressible flows under three-dimensional perturbations and inviscid symmetry breaking. SIAM J. Math. Anal. 45, (2013) ,no. 3, 1871-1885.
14. Boundary layer for a class of nonlinear pipe flow. J. Differential Equations 252, (2012) ,no. 12, 6387- 6413.
15. Boundary layers for viscous lake equations with Navier boundary conditions. Acta Math. Sinica (Chin. Ser.) 55,(2012), no. 5, 929-946.
16. Vanishing viscosity limits for the de- generate lake equations with Navier boundary conditions. Nonlinearity 25,( 2012) ,no. 3, 641-655.
17 Boundary layer associated witha class of 3D nonlinear plane parallel channel flows, Indiana University Mathematics Journal,( 2011), no. 4, 1113-1136.
18 Coupled boundary layers for the Primitive Equations of atmosphere. Nonlinearity 23,(2010), 883-908.
19. Vanishing viscous limits for the 2Dlake equations with Navier boundary conditions. J. Math. Anal. Appl. 338,(2008), 1070-1080.
20. Navier-Stokes approximations to 2D vortex sheets in half plane. Methods Appl. Anal., 14, (2007), no. 3, pp. 263-272.
21. Mathematical Results Related to a Two-Dimensional Magneto-hydrodynamic Equations. Acta Math. Sci. Ser. B Engl. Ed. 26,( 2006), no. 4, 744–756.


2021-2022春 数学分析4及习题课 2021-2022秋 数学分析3及习题课
2020-2021春 数学分析2及习题课 2020-2021秋 数学分析1及习题课
2019-2020春 常微分方程 2019-2020秋 数学分析3及习题课
2018-2019春 数学分析2及习题课 2018-2019秋 数学分析1及习题课


1. 流体力学中若干问题的定性研究,国家自然科学基金面上项目,2019.1-2022.12,主持
2. 多尺度流体方程及其耦合模型的数学理论,国家自然科学基金重点项目,2020.1-2024.12,参加

国际会议 (2021):
1. 加拿大国际流体线上会议(2020.07);
2. 中以PDE及数学物理国际会议(2021.08);
3. 南航举办“非线性偏微分方程进展国际会议”(2021.6)
4. 上海交大举办International Conference on Nonlinear PDE theory and Applications(2021.10)

Professor Dongjuan Niu has achieved a series of important results about the mathematical theory of nonlinear partial differential equations, including the well-posedness, stability and boundary layer analysis of solutions to three-dimensional Navier-Stokes equations, and coupled models for more than a decade.